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A Method for the Study of TE and TM Modes
in Waveguides of Very General Cross Section

JAGANNATH MAZUMDAR

Abstract—A simple method for the study of wave propagation in
uniform hollow waveguides of very general cross sections is proposed. The
method is based upon the concept of contour lines of electromagnetic field
components on a typical cress section of the waveguide and applies when
the boundary of the cross section of the guide is a closed curve. Examples
show that values of cutoff frequencies can be obtained easily to a useful

degree of accuracy.

I. INTRODUCTION

Although the general methods of solving the helmholtz
scalar equation, which describes the transverse electric
(TE) and transverse magnetic (TM) modes of waveguides,
are well developed, especially after the publication of a
pioneering work by Lord Rayleigh [1], there is consider-
able labor involved in carrying out the details of the
solution for an arbitrary shaped waveguide [2]-[10].
Guides of certain simple shapes have recently been studied
extensively. In this context, readers are referred to two
excellent review papers [11], [12] in which various ap-
proximate methods currently used in waveguide problems
with their relative merits and demerits have been sum-
marized. '

A new method is presented in this paper which is
designed primarily for solving practical microwave prob-
lems and to obtain, in an easy manner, the cutoff frequen-
cies and field distribution of one or more waveguide
modes. Many a problem for which the exact analytical
solution is very involved can be solved in this way, with
an accuracy sufficient for many practical purposes.

II. AN ACCOUNT OF THE METHOD AND THE
DERIVATION OF A NEW EQUATION

We are interested to find the time-periodic electromag-
netic fields which can exist inside an infinitely long,
metallic cylinder of arbitrary, but uniform, cross section.
The space inside the tube is assumed to be completely
filled with a homogeneous dielectric. The medium is as-
sumed to be lossless, isotropic, and homogeneous with
electrical parameters, p, &.

As usual, take the Z-axis as the direction along which
the wave propagates. The cross section of this guide forms
a closed curve in the XY-plane (Fig. 1). The shape of the
electromagnetic field in a transverse plane at any given
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Fig. 1. (a) A waveguide with an arbitrary cross section. (b) The cross
sectional contour with magnetic field lines.

time may be visualized by a mapping of the lines of force.
The direction of the transverse fields of each eigenwave
are independent of the time; in other words, in the trans-
verse planes there exists a time independent field config-
uration which travels through the waveguides with the
phase velocity. The magnetic field lines of the E waves
and the electric field of the H waves coincide with the
lines of constant E, and H,, respectively. Moreover, the
transverse electric and transverse magnetic fields are mut-
ually perpendicular to each other.

For TM or TE waves, components of the fields can be
derived either from E, or from H,. Let the transverse field
components be denoted by E, and Hy., respectively. Thus

E=E,+E, 6]
H=H,+H,. )

In the case of a TM wave the magnetic field lines
coincide with the contour lines for E, =Const. Denote this
family of contour lines by u(x, y)=Const. In the case of a
TE wave, the electric field lines coincide with the contour
line H,=Const., and denote this family of contour lines
by v(x, y)=Const. It is also known that the magnetic
field lines form a closed path surrounding the longitudinal
displacement current which is proportional to the longitu-
dinal electric intensity vector E,, and the latter must
vanish on the boundaries of the tube. It is clear that the
vector E; is at right angle to the #=Const. curves which
are the lines of magnetic force and the vector Hy is
therefore along these lines. Lines of constant E, are shown
schematically in Fig. 1(b). In this case the conductor must
have one of the lines of constant E, as its boundary. The
lines of electric force (or rather their projections in the
XY-plane) are the orthogonal trajectories of the first set of
curves. Hence the contour lines u(x, y)=Const. and
v(x, y)=Const. are mutually orthogonal. Furthermore,
the boundary of the waveguide belongs to the family of
magnetic lines and hence the contour lines u(x, y)=Const.
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form a system of nonintersecting closed curves, starting
from the outer boundary as one of the lines. Let this
family of equipotential curves be denoted by C,, 0<u<

so that C,=C, the boundary of the wavegulde and Cu.
coincides with the point(s) at which the maximum u=u*
is attained. Here it has been assumed that » increases
inwardly from the outer boundary of the guide.

Let us now set up the integral form of Maxwell’s
equation. Consider the region in the XY-plane of the
waveguide bounded by any closed contour u(x,y)=
Const. at any instant ¢. According to the Maxwell theory,
the line integral of the transverse component of the mag-
netic field around the contour C, is equal to the time rate
of change of the total electric flux through C,. Thus, one
gets Maxwell’s postulate in the form

SﬁC"HTds=e%fQuszdn

where the contour integral is taken around the closed path
u=Const., and the double integral is over the region {2,
enclosed by the same closed contour u=Const.

On differentiating partially with respect to ¢, and mak-
ing use of Maxwell’s equation in conjuction with (1) and
(2), (3) can now be written as

aEng if

©))

0’E,
or?

(4)

c, on ?Ja

where c=1/Vep is the velocity of the disturbance of the
dielectric and 9/9n denotes differentiation along the out-
ward normal to the curve. The quantity E, is in fact a
function of space coordinates (x, y, z) and temporal vari-
able ¢. Assuming harmonic time variations and wave
propagation in the positive z direction, then the above
equation can be written as shown in [13]

f¢ E dsduo =0 (5)
V7
where the notations
(au)2 (au )2
T=|%7) 5
X ay
2
k=2 (6)
c

have been used. Also use has been made of the fact that
E, and its derivatives with respect to u are constant on the
contour line = Const., since FE, depends on u alone.

The problem is thus reduced to solving the integro-
differential equation (5) for the field component E, with
Dirichlet’s boundary condition. Once this field component
has been obtained, all other field components can subse-
quently be calculated. If we denote cutoff wavenumber by
kg, then the corresponding wavelength is given by

27
Ap=—. 7
0 kO ()

It is to be noted here that in the case of the TM mode, the
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magnetic lines of force in a waveguide and the iso-
amplitude contour lines for a membrane of the same
shape and area of cross section of the waveguide satisfy
the same equations and boundary conditions. It will be
assumed here that the iso-amplitude contour lines for a
freely vibrating membrane in its fundamental mode coin-
cide with the lines of constant deflection for the same
membrane under uniformly distributed normal pressure,
which can be expressed as

V2u= Const. = —2 (say) ®)

and u=0 on the boundary of the cross section.

III. SoLuUTION PROCEDURE

The following relationships are obtained through the
application of Green’s theorem:

93 T ds=— ff(ﬂ+———)d9 24(u)
82 82
A A ) S

where A(u) is the area of the regions bounded by the

closed curve u=Const. which can be related to the total
area A, by the relationship

A(u) =41~ u—”*) (10)

It is to be mentioned here that the relationship (10) holds
exactly for a circular and elliptical region and approxi-
mately for other regions [14]. Upon differentiation with
respect to # and making use of the above relationships,
the governing integro-differential equation (5) finally re-
duces to

— (9)

d*E
Hu*—u Z
( ) P

dE,
~2—=% +k’E,=0. (11)

In terms of a new independent variable f defined by

u*—u=f>2 (12)
the general solution to (11) is
E,=AJ,(V2 kf )+ BY,(V2 kf ) (13)

and 4 and B are arbitrary constants and J;, and ¥, are
Bessel functions of the first and second kinds, respec-
tively. To avoid infinite values of E, at the point u=u*(f
=0), it is necessary, when dealing with a hollow simply
connected waveguide, to put B=0.

It is interesting to note here that a similar form of
solution in polar coordinates has been obtained in [6].
However, the [6] uses two variables (r,#) in the solution
procedure whereas in the present approach, the solution
depends only one unknown function #(x, y) or u(r, ).

Thus (13) indicates, that for TM modes, we must have

Jo(V2u* k)=0 (14)
yielding

V2u* k=B, (15)
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TABLE I
VALUES OF CUTOFF WAVELENGTH FOR TMy; MODE OF AN
ELLIPTICAL WAVEGUIDE FOR VARIOUS ASPECT RATIOS

a/b | 1.0 1.1 1.2 1.5 2.0 3.0 4.0 | 5.0 | 10,0
;—" 2.6128 | 2.4855 | 2.3655 | 2.0496 | 1.6525 [ 1.1685 | .8962 | .7247 .3677
TABLE 11
COMPARISON OF NUMERICAL VALUES OF THE CUTOFF
WAVELENGTH OF AN ELLIPTICAL WAVEGUIDE BY THE PRESENT
METHOD WITH THE EXACT VALUES

Eccentricity :—" by present method )‘—1 exact (Ref.1l6)
0.20159202 2.5855305 2.5855181
0.59456651 2.3153540 2.3168272
0.95088423 1.0926289 1.1132976

where B, is the ith root of zero order Bessel function, i.e.,

V2u* k=2.4048,5.5201,8.6537,:

Hence, for the cutoff wavenumber of lowest order TM
mode, considering the first root of the Bessel function,
one obtains

2.4048
V2u*

A simple expression has now been obtained for comput-
ing cutoff values for the TM mode in a waveguide. In
order to judge the degree of accuracy of this expression,
several different shaped waveguides will be considered in
the next section.

ko= (16)

IV. ILLUSTRATION

A. Elliptical Waveguide

As a first example of the above method, consider the
case of hollow elliptical waveguides. The exact value of
the cutoff frequency of a TM mode in a perfectly con-
ducting and empty elliptical waveguide can only be ob-
tained using complicated Mathieu and associated Mathieu
functions [15], [16]. Approximate solutions of this problem
have been given by several authors [11], [12].

With the semimajor and semiminor axes of the cross--

sectional ellipse being denoted by a and b, respectively,
the expression for the lines of magnetic forces, which
satisfies (8) is given by

e 2
u(x,)’)=a( —;"%; (17)
where
a?b?
PR (9

It is clear that u=0 on the boundary of the cross section
and u=u*=a’bh?/a’+b? at the center, which is the origin
of coordinates.

The cutoff wavelength A, for the TM mode is thus
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Fig. 2. Variation of cutoff frequency with eccentricity.
TABLE I

CuUTOFF WAVELENGTH AND CUTOFF WAVENUMBER FOR AN
EQUILATERAL TRIANGULAR WAVEGUIDE

BError

Ao 1.005 a in place of exact value a 0.5%
(Ref. 18)
kob 7.2144 in place of ezact value 0.5%

7.255 (Ref. 18)

obtained as

_g 2—2e?
a 2’4048 1+52 24048 2 —e?

where 8=a/b>1, and e is the eccentricity of the ellipse.

The numerical values of the parameter Ay/a for the
dominant TM mode (TM,) for the complete spectrum of
aspect ratios and for various eccentricities are listed in
Tables I and II. Also, in Fig. 2, in order to check the
accuracy of the procedure, a few modes over a wide range
of eccentricities is given in the mode chart together with
those given in [16]. It is evident in the figure that the
method described here in a relatively simple fashion leads
to excellent agreement with the exact result, indeed the
present method gives the graph exactly the same as that of
[16].

B. TM Mode of a Waveguide Whose Cross Section is an
Equilateral Triangle

(19)

As a second example, consider the case of a hollow
waveguide with cross section in the form of an equilateral
triangle. It is well known that the solution of the Poisson
equation (8) in this case yields [17]

u(x, y)= —I—(x —3xy?—ax?—ay? +—2%a3) (20)

Obviously u*=2/27a® occurs at the origin of the coordi-
nate system which is the centroid of the triangle of
height a.

Calculation for cutoff wavelength A, and cutoff wave
number kb (where b is the length of the side) is given in
Table III.

C. Coaxial Elliptical Waveguide

As the next example, consider the case of a coaxial
elliptical waveguide bounded externally and internally by
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Fig. 3. Coaxial elliptical waveguide

similar ellipses (Fig. 3). In this case the electromagnetic
wave propagates in the annular region between two coaxial
elliptical conductors and there is zero field outside.

Although, as mentioned earlier, the exact solution of
waveguide problems for elliptical regions can be obtained
using complicated Mathieu functions, the author believes
that this problem has not been discussed so far in the
literature, except the case when the two ellipses degener-
ate into circles [19].

In this case, by consideration of symmetry,

where « is given by (18). Further, the similarity condition
of two confocal ellipses gives

a, _ _b_1 _

a - b _B (Sa.)))9
Thus, one gets u=0 on the outer boundary of the region
and u=a(1—$%) on the inner boundary, or in terms of

the variable f given by

oz—u=f2

21

0<B<1. (22)

(23)

one obtains f= Va on the outer boundary and f=8Va
on the inner boundary.

Since the second Bessel function in the general wave-
guide solution given by (13) cannot be excluded in this
case, one obtains the following equation by substituting
the required boundary conditions:

Jo(V2a Bk)Yy(V2a k) —Jo(V2a k) Y(V2a Bk)=0

(24)
which can be written as
Jo(BY)Yo(v) ~Jo(7)Yo(By) =0 (25)
where
y=V2a k. (26)

It is known from the properties of Bessel functions that
the roots of (25) are all real and simple, and that to any
positive root y there corresponds a negative root —v.

Consider now the function

Us(7,8) =Jo(%, B) Yo(¥,,) —Jo(¥,) Yo( ¥ B)-

The first seven roots of the above equation are shown in
Table IV. For the first simple root, one obtains

27)

2a%b?
2+b2

koB8=0.7632. (28)

a

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 9, SEPTEMBER 1980

?

0 < .2 3 4 5 .6 -7 .8 .9
ECCENTRICITY, €

Fig. 4. Variation of cutoff wavenumber with eccentricity for a coaxial

elliptical waveguide.
TABLE IV
Fmrst SEVEN ROOTS OF [30]
n: | 1 2 3 4 5 6 7
Yo | +7632 | 1.5575 | 2.3479 | 3.1352 | 3.9210{ 4.7073 | 5.4933

It is interesting to note that if one puts =5 and a,=b,
so that the two ellipses reduce to circles, then the above
equation yields the exact value for the coaxial circular
cylindrical waveguide [19] where in this case 8 becomes
the ratio of the two radii of the circles. Equation (28) can
also be written in the form

i g 07632 [2-¢?
0 B 2-2¢?

The numerical values of the cutoff number (k,a) for
various values of B8 and for a range of values of the
eccentricity are shown graphically in Fig,. 4.

(29)

D. Waveguides having Cross Section in the Form of
Semicircle, Semiellipse, and Semiparabola

Finally, let us consider a group of three distinct shaped
waveguides having semicircular, semielliptical, and semi-
parabolic cross sections with respective geometrical di-
mensions, as shown in Fig. 5. The equations for magnetic
contour lines in these three cases are obtained from the
knowledge of corresponding torsion functions given in
[17], [20], [21] in polar, elliptical, and parabolic coordi-
nates, respectively.

The University of Adelaide’s CYBER 173 computer
was used to obtain the values of u* for these three cases.
The results of these computations together with the com-
puted values of the cutoff number k,a are presented in
Table V.

Y. CONCLUSIONS

A simple and fairly accurate method for the analysis of
the hollow waveguide problem with arbitrary shape has
been proposed. The essence of the present approach is to
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Fig. 5. Waveguides with () semicircular, (b) semielliptical, (c) semi-
parabolic cross section.

TABLE V
NUMERICAL VALUES OF CUTOFF WAVENUMBERS FOR
SEMICIRCULAR, SEMIELLIPTIC, AND SEMIPARABOLIC WAVEGUIDES

Ref.

Type of Waveguide Value of u* Value of kja Ex'ﬁ;] €
Semi-circular 0.1952 a’ 3.8488 3.832
Semi-elliptic with
aspect ratio g =

1.0 0.1952 a’ 3.8488

0.9 0.1656 a? 4.1786

0.8 0.1360 a? 4.6110

0.7 0.1085 a? 5.1624

0.6 0.0822 a? 5.9310

0.5 0.0585 a? 7.0305
Semi-parabolic 0.0556 a*
with aspect ratio where 7.2115

5 a = 20?

reduce the transverse partial differential equation for a
longitudinal field component to an ordinary second order
differential equation using the concept of contour lines on
a typical cross section of the waveguide. Further, it has
been shown that if by using the membrane or the torsion
analogy or by any of the direct methods of variational
calculus the appropriate equation for the family of
equipotential lines for any waveguide is known, the prob-
lem of determining the cutoff values for that particular
domain becomes a very simple affair. The method has
been amply illustrated in a selection of practically im-
portant problems some of which have not been discussed
in literature in the past.
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