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A Method for the Study of TE and TM Modes
in Waveguides of Very General Cross Section

JAGANNATH MAZUMDAR

Abstnzct-A simple method for the study of wave propagation fo
unfform hoUow waveguidea of very general cross sections fs proposed The
method k based upon the concept of contour fines of eledmnqnetic field
components on a typical cross section of the wavegufde and applb when
titi*of WH*onofti @*kacl--e. Examples
show that Valuea of cutoff frequeneiea can be Obtafned easffy to a useful

degree of accuracy.

I. INTRODUCTION

Although the general methods of solving the hehnholtz

scalar equation, which describes the transverse electric

(TE) and transverse magnetic (TM) modes of waveguides,

are well developed, especially after the publication of a

pioneering work by Lord Rayleigh [1], there is consider-

able labor involved in carrying out the details of the

solution for an arbitrary shaped waveguide [2]–[ 10].

Guides of certain simple shapes have recently been studied

extensively. In this context, readers are referred to two

excellent review papers [11], [12] in which various ap-

proximate methods currently used in waveguide problems

with their relative merits and demerits have been sum-

marized.

A new method is presented in this paper which is

designed primarily for solving practical microwave prob-

lems and to obtain, in an easy manner, the cutoff frequen-

cies and field distribution of one or more waveguide

modes. Many a problem for which the exact analytical

solution is very involved can be solved in this way, with

an accuracy sufficient for many practical purposes.

H. AN ACCOUNT OF THE METHOD AND THE

DERIVATION OF A NEW EQUATION

We are interested to find the time-periodic electromag-

netic fields which can exist inside an infinitely long,

metallic cylinder of arbitrary, but uniform, cross section.

The space inside the tube is assumed to be completely

filled with a homogeneous dielectric. The medium is as-

sumed to be lossless, isotropic, and homogeneous with

electrical parameters, w, 8.

As usual, take the Z-axis as the direction along which

the wave propagates. The cross section of this guide forms

a closed curve in the XY-plane (Fig. 1). The shape of the

electromagnetic field in a transverse plane at any given
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Fig. 1. (a) A waveguide with an arbitrary cross section. (b) The cross
~ectionRf ~ntom with magnetic field lines.

time may be visualized by a mapping of the lines of force.

The direction of the transverse fields of each eigenwave

are independent of the time; in other words, in the trans-

verse planes there exists a time independent field config-

uration which travels through the waveguides with the

phase velocity. The magnetic field lines of the E waves

and the electric field of the H waves coincide with the

lines of constant E= and Hz, respectively. Moreover, the

transverse electric and transverse magnetic fields are mut-

ually perpendicular to each other.

For TM or TE waves, components of the fields can be

derived either from E= or from Hz. Let the transverse field

components be denoted by ET and llT, respectively. l%US

E= ET+EZ (1)

H= HT+HZ. (2)

In the case of a TM wave the magnetic field lines

coincide with the contour lines for E== Const. Denote this

family of contour lines by U(X, y) = Const. In the case of a

TE wave, the electric field lines coincide with the contour

line Hz= Const., and denote this family of contour lines

by O(X, y) = Const. It is also known that the magnetic

field lines form a closed path surrounding the longitudinal

displacement current which is proportional to the longitu-

dinal electric intensity vector Ez, and the latter must

vanish on the boundaries of the tube. It is clear that the

vector ET is at right angle to the u= Const. curves which

are the lines of magnetic force and the vector HT is

therefore along these lines. Lines of constant E= are shcnvn

schematically in Fig. l(b). In this case the conductor must

have one of the lines of constant E= as its boundary. The

lines of electric force (or rather their projections in the

XY-plane) are the orthogonal trajectories of the first set of
curves. Hence the contour lines U(X, y ) = Const. and

O(X, y)= Cortst. are mutually orthogonal. Furthermore,

the boundary of the waveguide belongs to the family of

magnetic lines and hence the contour lines U(X, y) = Const.
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form a system of nonintersecting closed curves, starting

from the outer boundary as one of the lines. Let this

family of equipotential curves be denoted by CU, 0< u < u*,

so that CO= C, the boundary of the waveguide, and CU.

coincides with the point(s) at which the maximum u = u *

is attained. Here it has been assumed that u increases

inwardly from the outer boundary of the guide.

Let us now set up the integral form of Maxwell’s

equation. Consider the region in the XY-plane of the

waveguide bounded by any closed contour U(X, y ) =

Const. at any instant t. According to the Maxwell theory,

the line integral of the transverse component of the mag-

netic field around the contour CU is equal to the time rate

of change of the total electric flux through CU. Thus, one

gets Maxwell’s postulate in the form

(3)

where the contour integral is taken around the closed path

u= Const., and the double integral is over the region flu

enclosed by the same closed contour u= Const.

On differentiating partially with respect to t, and mak-

ing use of Maxwell’s equation in conduction with (1) and

(2), (3) can now be written as

(4)

where c= 1/@ is the velocity of the disturbance of the

dielectric and ~/iln denotes differentiation along the out-

ward normal to the curve. The quantity E= is in fact a

function of space coordinates (x, y, z ) and temporal vari-

able t. Assuming harmonic time variations and wave

propagation in the positive z direction, then the above

equation can be written as shown in [13]

where the notations

(6)

have been used. Also use has been made of the fact that
E= and its derivatives with respect to u are constant on the

contour line u = Const., since E= depends on u alone.

The problem is thus reduced to solving the integro-

differential equation (5) for the field component E= with

Dirichlet’s boundary condition. Once this field component

has been obtained, all other field components can subse-

quently be calculated. If we denote cutoff wavenumber by

ko, then the corresponding wavelength is given by

A+
o

(7)

It is to be noted here that in the case of the TM mode, the

magnetic lines of force in a waveguide and the iso-

amplitude contour lines for a membrane of the same

shape and area of cross section of the waveguide satisfy

the same equations and boundary conditions. It will be

assumed here that the iso-amplitude contour lines for a

freely vibrating membrane in its fundamental mode coin-

cide with the lines of constant deflection for the same

membrane under uniformly distributed normal pressure,

which can be expressed as

V2U= Const. = –2 (suy) (8)

and u= O on the bounda~ of the cross section.

III. SOLUTION PROCEDURE

The following relationships are obtained through the

application of Green’s theorem:

where A(u) is the area of the regions bounded by the

closed curve u= Const. which can be related to the total

area A. by the relationship

A(U)= AO(l–; ). (lo)

It is to be mentioned here that the relationship (10) holds

exactly for a circular and elliptical region and approxi-

mately for other regions [14]. Upon differentiation with

respect to u and making use of the above relationships,

the governing integro-differential equation (5) finally re-

duces to

d2E dE
2( U*– Z4)--’-Q –2--J du +k2Ez=0.

du2
(11)

In terms of a new independent variable j defined by

~*–u=j2 (12)

the general solution to (11) is

Ez=A.lo(ti kf)+BYo(ti kj) (13)

and A and B are arbitrary constants and Jo and Y. are

Bessel functions of the first and second kinds, respec-

tively. To avoid infinite values of E= at the point u= u*( f
= O), it is necessary, when dealing with a hollow simply

connected waveguide, to put B = O.

It is interesting to note here that a similar form of

solution in polar coordinates has been obtained in [6].

However, the [6] uses two variables (r, 0) in the solution

procedure whereas in the present approach, the solution

depends only one unknown function U(X, y) or u(r, 8).

Thus (13) indicates, that for TM modes, we must have

Jo(*k)=O (14)

yielding

~k=Bi (15)
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TABLE I
VALUESOF GTOFF WAVELENGTH FOR TMO1 MODE OF AN

ELLIPTICAL WAVEGUIDE FOR VARIOUSASPECTRAT30S

* 1.0 1.1 1.2 1.5 2.0 3.0 4.0 5.0 10.0

16 2.6128 2.4855 2.3655 2.0496 1.6525 1.1685 .8962 .7247 .36775-

TABLE II
~OMPAR3SON OF NUMBR3CAL VALURS OF mm CUTOFF

WAVELBNGm OFAN ELLIPTICAL WAVEGUIDEBY THEPRESENT
METHOD wrm mm ExAcr Vmuss

b by ~re~en~ ~e~~o~Eccentricity ~ $ exact (Ref.16)

0.20159202 2.5855305 2.5855181

0,59456651 2.3153540 2.3168272

0.95088423 1.0926289 1.1132976

where Bi is the i th root of zero order Bessel function, i.e.,

= k=2.4048,5.5201,8 .6537,” “ “ .

Hence, for the cutoff wavenumber of lowest order TM

mode, considering the first root of the Bessel function,

one obtains

~ _ 2.4048_—

0 m“
(16)

A simple expression has now been obtained for comput-

ing cutoff values for the TM mode in a waveguide. In

order to iudge the degree of accuracy of this expression,

several &ffe~ent shap~d

the next section.

IV.

A. E1l@ical Waoeguide

waveguides till be considered in

ILLUSTRATION

As a first example of the above method, consider the

case of hollow elliptical waveguides. The exact value of

the cutoff frequency of a TM mode in a perfectly con-

ducting and empty elliptical waveguide can only be ob-

tained using complicated Mathieu and associated Mathieu

functions [15], [16]. Approximate solutions of this problem

have been given by several authors [11], [12].

With the semimajor and semiminor axes of the cross-

sectional ellipse being denoted by a and b, respectively,

the expression for the lines of magnetic forces, which

satisfies (8) is given by

‘(xy)=a(+a
where

a=b=~=
a2+b2 “

(17)

(18)

It is clear that u= O on the boundary of the cross section
and u= u* = a2b2/a2 + b2 at the center, which is the origin

of coordinates.

The cutoff wavelength & for the TM mode is thus
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Fig. 2. Variation of cutoff frequency with eccentricity,

TABLE 111
tiOFF WAVBLENGTH AND CUTOFF WAVENUMBER FOR AN

EQUILATERAL TRIANGULAR WAVBGUIDE

1- Error
3

Lo 1.005 a in place of exact value a 0.5%
(Ref. 18)

kob 7.2144 in place of exact value 0.5%
7.255 (Ref. 18)

where ~ = a/b> 1, and e is the eccentricity of the ellipse.

The numerical values of the parameter AO/a for the

dominant TM mode (TMol) for the complete spectrunn of

aspect ratios and for various eccentricities are listed in

Tables I and IL Also, in Fig. 2, in order to check the

accuracy of the procedure, a few modes over a wide range

of eccentricities is given in the mode chart together with

those given in [16]. It is evident in the figure that the

method desclibed here in a relatively simple fashion leads

to excellent agreement with the exact result, indeed the

present method gives the graph exactly the same as that of
[16].

B. TM Mode of a Waveguide Whose Cross Section is an

Equilateral Triangle

As a second example, consider the case of a hollow

waveguide with cross section in the form of an equilateral

triangle. It is well known that the solution of the Poisson

equation (8) in this case yields [17]

1

(

4

)
64(x, Y)=— x3–3xy2—ax2 –ay2+fia3 . (20)

2a

Obviously u*= 2/27a 2 occurs at the origin of the coordi-

nate system which is the centroid of the triangle of

height a.

Calculation for cutoff wavelength A. and cutoff wave

number k. b {(where b is the length of the side) is given in
Table III.

C. Coaxial Ell@tical Waveguide

As the next example, consider the case of a coaxial

elliptical waveguide bounded externally and internally by
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Fig. 3. Coaxial elliptical waveguide

similar ellipses (Fig. 3), In this case the electromagnetic

wave propagates in the annular region between two coaxial

elliptical conductors and there is zero field outside.

Although, as mentioned earlier, the exact solution of

waveguide problems for elliptical regions can be obtained

using complicated Mathieu functions, the author believes

that this problem has not been discussed so far in the

literature, except the case when the two ellipses degener-

ate into circles [19].

In this case, by consideration of symmetry,

( s-aU(.x, y)=a l– (21)

where a is given by (18). Further, the similarity condition

of two confocal ellipses gives

al bl
—. ~=p(sw), O<p<l.
a

(22)

Thus, one gets u= O on the outer boundary of the region

and u = a(l – ~ 2, on the inner boundary, or in terms of

the variable ~ given by

~—u=fz (23)

one obtains f= d on the outer boundary and j = ~ ~

on the inner boundary.

Since the second Bessel function in the general wave-

guide solution given by (13) cannot be excluded in this

case, one obtains the following equation by substituting

the required boundary conditions:

JO(= /3k)YO(~ k)–~o(fi k) YO(fi /3k)=0

(24)

which can be written as

Jo(fly)Yo(y) -Yo(y)Yo(py)=o (25)

where

y=~k. (26)

It is known from the properties of Bessel functions that

the roots of (25) are all real and simple, and that to any

positive root y there corresponds a negative root – y.

Consider now the function

u.(YnB)=Jo(YnB) yo(Yn)–Jo(Yn)yo( YnB). (27)

The first seven roots of the above equation are shown in

Table IV. For the first simple root, one obtains

i

2a2b2
— ko~=0.7632.
a2+b2

(28)
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Fig. 4. Variation of cutoff wavenurnber with eccentricity for a coaxitd
elliptical waveguide.

TABLE IV
FIRST SEVSN ROOTS OF [30]

n: 1 2 3 4 5 6 7

Y# .7632 1.5575 2.3479 3.1352 3.9210 4.7073 5.4933

It is interesting to note that if one puts a= b and al= b,

so that the two ellipses reduce to circles, then the above

equation yields the exact value for the coaxial circular

cylindrical waveguide [19] where in this case ~ becomes

the ratio of the two radii of the circles. Equation (28) can

also be written in the form

k a_ 0.7632

r

2–e2_—
0

B m“
(29)

The numerical values of the cutoff number (koa) for

various values of ~ and for a range of values of the

eccentricity are shown graphically in Fig. 4.

D. Waveguides having Cross Section in the Form of

Semicircle, Semielhpse, and Semtjarabola

Finally, let us consider a group of three distinct shaped

waveguides having semicircular, semielliptical, and semi-

parabolic cross sections with respective geometrical di-

mensions, as shown in Fig. 5. The equations for magnetic

contour lines in these three cases are obtained from the

knowledge of corresponding torsion functions given in
[17], [20], [21] in polar, elliptical, and parabolic coordi-

nates, respectively.

The University of Adelaide’s CYBER 173 computer

was used to obtain the values of U* for these three cases.

The results of these computations together with the com-

puted values of the cutoff number koa are presented in

Table V.

V. CONCLUSIONS

A simple and fairly accurate method for the analysis of

the hollow waveguide problem with arbitrary shape has

been proposed. The essence of the present approach is to



wmm: ‘1% AND TM MODES IN WAVEGUIDES
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Fig. 5. Waveguides with (a) seticircdar, (b) semielliptical, (c) semi-
parabolic cross section.

TABLE V
NUMERICALVALUJ3SOFmm WAvrmur@rt3R8FOR

SEMtCmCULAR,SSMIELLIFTIC,w Sm.m ARABOLICWAVEGUIDES

Type of waveguide Value of u* Value of k~a
Exact Ref.

[19]

Semi-circular 0.1952 az 3.8488 3.832

Semi-elliptic with

aspect ratio ~ =

1.0 0.1952 a’ 3. S488

0.9 0.1656 az 4.1786

0.s 0.1360 az 4.6110

0.7 0.1085 az 5.1624

0.6 0.0822 az 5.9310

0.5 0.0585 a’ 7.0305

Semi-parabolic 0.0556 az
with aspect ratio where 7.2115

.5 a = 2,2-2

reduce the transverse partial differential equation for a

longitudinal field comp~nent to an ordinary ‘second order

differential equation using the concept of contour lines on

a typical cross section of the waveguide. Further, it has

been shown that if by using the membrane or the torsion

analogy or by any of the direct methods of variational

calculus the appropriate equation for the family of

equipotential lines for any waveguide is known, the prob-

lem of determining the cutoff values for that particular

domain becomes a very simple affair. The method has

been amply illustrated in a selection of practically im-

portant problems some of which have not been discussed

in literature in the past.
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